If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18y^2=234
We move all terms to the left:
18y^2-(234)=0
a = 18; b = 0; c = -234;
Δ = b2-4ac
Δ = 02-4·18·(-234)
Δ = 16848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16848}=\sqrt{1296*13}=\sqrt{1296}*\sqrt{13}=36\sqrt{13}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{13}}{2*18}=\frac{0-36\sqrt{13}}{36} =-\frac{36\sqrt{13}}{36} =-\sqrt{13} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{13}}{2*18}=\frac{0+36\sqrt{13}}{36} =\frac{36\sqrt{13}}{36} =\sqrt{13} $
| A=21/10x4/15x25/2 | | x3-9=4 | | 6+5t=-10+3t | | x4-9=4 | | 5x+7-3x+9=30 | | (1/2)x+5=6 | | -6b=-7b-8 | | 7x+5=6x+22 | | I4x-2I=2x+2 | | 78÷{x-4}=2 | | 12=-3(8h-4)+24h | | -4+4f=3f+6 | | 3b+3(1-2b)=6 | | 1.5(-4x+3)=-19.5 | | 4(1-4n)=-60 | | 26=13x+13 | | 26x(3x)+4=+8 | | u+2.9=9.59 | | 8x+4x-10=50 | | (2x+5)+3=6 | | 3(2x−5)=−5(x−4)+x | | 2x*x=12 | | 52=3f-21 | | -45f=-12-33f^2 | | 12x−96=84 | | 2x^2+19=13 | | J=4j+9 | | p/2-3=11 | | 8=n/7=5 | | –10m+3=12–8m | | (3y-6)=18 | | 24+-2y=23+-2y+1 |